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Abstract: A flexible protein—peptide docking method has been designed to consider not only ligand flexibility
but also the flexibility of the protein. The method is based on a Monte Carlo annealing process. Simulations
with a distance root-mean-square (dRMS) virtual energy function revealed that the flexibility of protein side
chains was as important as ligand flexibility for successful protein—peptide docking. On the basis of mean
field theory, a transferable potential was designed to evaluate distance-dependent protein—ligand interactions
and atomic solvation energies. The potential parameters were developed using a self-consistent process
based on only 10 known complex structures. The effectiveness of each intermediate potential was judged
on the basis of a Z score, approximating the gap between the energy of the native complex and the average
energy of a decoy set. The Z score was determined using experimentally determined native structures and
decoys generated by docking with the intermediate potentials. Using 6600 generated decoys and the Z
score optimization criterion proposed in this work, the developed potential yielded an acceptable correlation
of R? = 0.77, with binding free energies determined for known MHC | complexes (Class | Major
Histocompatibility protein HLA-A*0201) which were not present in the training set. Test docking on 25
complexes further revealed a significant correlation between energy and dRMS, important for identifying
native-like conformations. The near-native structures always belonged to one of the conformational classes
with lower predicted binding energy. The lowest energy docked conformations are generally associated
with near-native conformations, less than 3.0 A dRMS (and in many cases less than 1.0 A) from the

experimentally determined structures.

Introduction

Molecular docking is widely used in modern drug discovery,
and many approaches, such as DOGCKand AutoDock!~6
have been developed for evaluating protesmall molecule
interactions. Full consideration of complex flexibility, especially
ligand flexibility, is a common feature of current docking
methods. In recent years, proteiprotein docking has drawn
significant attention, and some popular methods have been
developed which were mainly based on geometric or chemical
complementarity with respect to an inflexible protéi3 While

much attention has been paid to these areas of study, the
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intermediate challenge of proteipolypeptide docking is often
neglected. One reason is simply the problem of classification,
where proteir-peptide docking is often grouped into either
protein—small molecule or proteiprotein docking according

to peptide size. Another reason lies in the significant compu-
tational difficulties due to the flexibility of peptides and proteins,
both of which should be addressed. Considering the low toxicity,
synthetic accessibility, and other potentially useful features of
polypeptides, it is important to study proteipeptide inter-
actions and address the challenge of flexibility inherent to these

systems.

In molecular docking, evaluating the binding affinity between
the protein and ligand accurately and rapidly remains a principal
challenge. Traditional force fields in molecular mechanics (MM)
evaluate free energy using several techniques, such as free
energy perturbation (FEP), thermodynamic integration (TI),
etc14~17 Unfortunately, significant computational requirements
prevent broad application of these techniques for lead screening.
Alternatively, the development of empirical scoring functions
has been found to be a practical compromise and has been used
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in exploring proteir-ligand interactions, using quantitative optimization. The optimization algorithm is self-consistent,
structure-activity relationships (QSAR), three-dimensional evaluating the score of each intermediate potential on the basis
QSAR such as comparative molecular field analysis (CoMFA), of decoys generated with the potential obtained in the previous
and especially expanded master equation methods {{E)L8 optimization steps. The optimized potential is found to yield a
Using these methods, one can construct a scoring function thathigh correlation with binding free energies determined for
exhibits a good correlation with known experimental binding known MHC | complexes that are not in the training set (Class
free energies as well as determined or computed physiochemical Major Histocompatibility protein HLA-A*0201). When the
properties from known structures in the training $et°> These optimized potential is applied to proteipeptide docking, a
approaches generally perform well in closely related pretein  significant correlation between energy and distance root-mean-
ligand systems rather than being universally applicabté. square (dRMS) of the generated conformations is observed, and
Other scoring approaches use knowledge-based methods, whiclmative-like conformations can be identified in most cases.
adopt mean field theory (MF) to derive an averaged interaction
potential based on the statistical distribution of structural features Methods
among proteirrligand complexes in a training s&t3! Because Structure Sets.We systematically searched the protein data bank
of statistical limitations, this type of potential has difficulties (PDB) (release April 2001, no. 96) and found 443 entries for pretein
in representing distance-dependent interactions, such as elecpeptide complexes. All structures were classified using structural
trostatic energy®-28 Following the original SMoG method, classification of proteins (SCOP), and redundant structures were
Muegge et al. approached this problem using a large numberremoved, leaving 87 complexes. An additional selection criterion was
of training structured® Many of these approaches have been then applied,_ eliminating peptides with ur_matu_ral ami_no'acid_s, com-
explored in drug discovery. However, their efficiency and plexes mvolvmg small molecules or metal ions in the binding site, and
- . . . . complexes with other structural defects. In the end, 25 structures
universality depend on the size and structural diversity of the

. . . remained, and few of them had experimental binding free energies
training set. In particular, the master equation method also available P g g

\r/Si?flljilrrletsh;h'ﬁ’aei)r(lFi)r?;Zeetntzlsbflgrdltrf:ge f;)ergtgggggplﬁzgfciﬁglzgggture Ten from the ren_1a_ining 25 prote_hpeptide complgx structures were
i . ) -1 selected as the training set to optimize the potential. These complexes
StUdled. hgre, thege mgthods will b? difficult to apply because comprise a diverse set, as they belong to different protein families and
of the limited availability of determined structures and corre- are involved in different disease processes (Table 1). The peptide ligands
sponding experimental binding free energies. Our group pro- also have different lengths, and their composition consists of all 20
posed & score optimization approach to potential development natural amino acids. All these structures are high-resolution X-ray
with applications to protein folding’32 Based on the large  structures £2.3 A), with the exception of one NMR structure that is
number of decoys generated from a few typical structuzes, —relatedtoan important apoptosis_ process (PDB ID 1bxl). The remaining
score optimization can generate a transferable potential directly1> Structures comprise the testing set.
applicable to proteirpeptide docking with possible applications CIa_ssmcatlon of Atom Types.The cqordlnates of hydrogen atoms _
for binding free energy prediction. in nan_ve structures are se_ldom determined from X-ray crystallographic
In this work, we have developed a flexible docking method experiments. In our docking process, hydrogens were treated as one

. . ) i . ~ atom type and were only considered in removing clashes but not in
using a Monte Carlo annealing simulation. This approach is gnerqy evaluation. Because our potential mainly considers a solvent-

rooted in an earlier Monte Carlo-based approach to folding in accessible surface-based solvation energy and distance-dependent
fully atomic and flexible protein modefS.As opposed to the contact energies, which are related to electrostatic interactions, van der
majority of docking approaches, the method proposed here Waals interactions, and salt-bridge and hydrogen-bond interactions, the
considers not only the flexibility of the ligand but also that of atom types in the method will be classified by their atomic numbers,
the protein. To represent short-range dispersion and |0ng-rangepartial charges, and van der Waals radii. All of these parameters are
electrostatic interactions, our approach is based on a distancetaken from the parm99 parameter set of the AMBER 7.0 progfaff.

dependent potential, which is then parametrizedZbgcore The partial charge is the principal factor in classification due to its
' significant variability. On the basis of a cutoff of 0.2 charge unit, all

(18) Bohm, H. JJ. Comput Aided Mol Des 1994 8, 243-256. atoms including hydrogen atoms and metal ions were classified into
(19) gﬁgna{\é&é;i_zatz%nggﬂigsss. L.; Holm, A; Buus, S.; TschinkeJWed. 12 atom types (supplement A, Supporting Information). Metal ions not
em. ] i ; T . .

(20) Logean, A Sette, A.. Rognan, Bioorg. Med Chem Lett 2001, 11, |nv0IV(_ad in bl_ndlng were nqt _conS|dered. Neglecting hydrogens and
675-679. ] _ metal ions, this left 10 remaining atom types and a total of 400410

(1) ;’ggﬂ%g? X.; Liu, L; Lai, L. H.; Tang, Y. QJ. Mol. Model. 1998 4, 10 x 4) parameters to be optimized within the energy function.

(22) EIdridge,.M..D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. Flexible Molecular Docking Method. (a) Monte Carlo Annealing

- »;'Q-Comphl/JII_AlidEd MolBD_PLS 1997, 11,T4_2|§>|—411)45-£|3 Mol Biol. 1996 26 Process A Monte Carlo annealing simulation protocol was adopted in

(23) Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, &Mol. Biol. 1996 261, our flexible docking proces¥. The initial temperature was set to be

(24) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor,JRMol. Biol. 3% of the energy of the native structure, the cooling rate was 0.992,
1997, 267, 727-748. initi i ;

(25) Muegge. |.: Martin. Y. CJ. Med. Chem1999 42, 791-804. the |_n|t|al accgptance rate was 0.750, and the simulation was not

(26) DeWitte, R. S.; Ishchenko, A. V.; Shakhnovich, EJJAm Chem Soc terminated until the energy difference between the two nearest accepted

@) 1Dgg\/z/'t1tlglR46808_S1161k?h. ich. E.J. Am. Chem. Sod996 118 11733- steps converged to less than 0.0001 of the total energy for 10 000 times

eWitte, R. S.; Shakhnovich, E.J. Am. Chem. So

11744.

(28) Shimada, J.; Ishchenko, A. V.; Shakhnovich, EPilotein Sci 200Q 9, (34) Wang, J.; Cieplak, P.; Kollman, B. Comput Chem 200Q 21, 1049-
765-775. 1074.

(29) Luo, H.; Sharp, KProc. Natl. Acad Sci U.S.A.2002 99, 10399-10404. (35) Cieplak, P.; Caldwell, J.; Kollman, B. Comput Chem 2001, 22, 1048-

(30) Mirny, L. A.; Shakhnovich, E. IJ. Mol. Biol. 1996 264, 1164-1179. 1057.

(31) Jiang, L.; Gao, Y.; Mao, F.; Liu, Z.; Lai, [Proteins2002 46, 190-196. (36) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.;

(32) Vendruscolo, M.; Mirny, L. A.; Shakhnovich, E. I.; Domany, Boteins Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P.
200Q 41, 192-201. A. J. Am. Chem. Sod.995 117, 5179-5197.

(33) Shimada, J.; Kussell, E. L.; Shakhnovich, EJ.IMol. Biol. 2001, 308 (37) Binder, K.; Heermann, D. WMonte Carlo simulation in statistical
79-95. physics: an introductionSpringer-Verlag: Berlin, 1992.
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Table 1. Database of Protein—Peptide Complexes

PDB resolution/ exposure
ID A protein ligand length degree/%

1la3@ 2.00 aspartic proteaséiv-1 protease EDL 3 16.2
lawdt 1.58 isomerasecyclophilin a HAGPIA 6 53.9
1be@ 1.82 third pdz domain from the synaptic protein psd-95 KQTSV 5 40.7
1bxP NMR apoptosis- bcl-x! GQVGRQLAIIGDDINR 16 40.2
lcka 1.50 oncogene protein-c-crikl(s musculus PPPALPPKK 9 58.8
leg# 2.00 dystrophin ww domain fragment NMTPYRSPPPYVP 13 61.7
lelw? 1.60 chaperone-tprl-domain of hop GPTIEEVD 8 48.8
lgué 1.85 transcription reg-retinoblastoma protein DLYCYEQLN 9 46.4
lycqt 2.30 oncogene proteiXenopus lagis mdm?2 ETFSDLWKLLP 11 42.4
2fib2 2.10 blood coagulation-humanfibrinogen carboxyl-terminal fragment GPRP 4 32.2
1i31b 25 exocytosig(2 adaptin subunit (ap50) of ap2 clathrin adaptor FYRALM 6 61.8
2chp 2.1 proto-oncogene n-terminal domain of cbl SDGYTPEPA 9 64.8
1g3f NMR apoptosis bir3 domain of xiap AVPI 4 43.8
liog NMR signaling protein growth factor receptor-bound protein 2 (grb2) sh3 domain RHYRPLPPLP 10 57.8
lab® 1.6 serine protease (bovigechymotrypsin) CGVPAIQPVL 10 64.1
1bc® 2.2 methyltransferase NWETF 5 49.6
1du? 1.8 human class | histocompatibility antigen (hla-a 0201) LLFGYPVYV 9 26.1
leviP 18 mena evhl domain from murine FPPPP 5 44.0
1f95P NMR contractile protein (dynein light chain 8 (dlc8))/apoptosis MSCDKSTQT 9 44.2
ljhgp 1.3 regulatory protein (trp operon repressor mutant v58l) w 1 37.3
lvwgP 1.46 biotin-binding protein (streptavidin) CHPQGPPC 8 41.0
8tinP 1.6 hydrolase (metalloproteinase thermolysin (E.C. 3.4.24.27)) VK 2 39.0
2sely 25 hla-dr4 class Il histocompatibility antigen AYMRADAAAGGA 12 38.7
lce? 1.9 therapeutic antibody campath-1h fab GTSSPSAD 8 33.2
lpal® 2.5 apopain protease DEVD 4 27.9
1shf 1.9 fyn proto-oncogene tyrosine kinas¢omo sapiens PPPALPPKK 9 -
2cpkF 1.63 cyclophilin a HAGPIA 6 -

aTen complexes in training setFifteen complexes in testing séfTwo unbound proteins in testing set.

continuously or the simulation reached the maximum number of 1.5  For each proteirtligand complex, multiple Monte Carlo docking
million steps. To accelerate computational speed, all atoms were mappedsimulations are started from different random seeds. The dRMSs
into a periodic cubic space, which can accommodate any size proteinbetween generated decoys and the native structure are computed, and
complex in theory. This cubic space is partitioned by a grid into smaller a stable distribution is ensured from enough simulations. Additionally,
cubes in order to accelerate energy calculations. The spacing of thethe dRMSs between generated decoys are also computed, and all decoys
internal grid is 6.0 A, and only the interactions within the same grid or are clustered into different conformational classes by dRMS with a
neighboring grids will be counted. The contact distance cutoff between cutoff of 3.0 A. The docking simulations continue until no new
atoms was 6.0 A, meaning that all interactions occurring past this cutoff conformational classes are generated. For most proligiand com-
are neglected. A simple starting configuration was chosen by separatingplexes in this work, a total of 100 simulations are enough to ensure
the protein and ligand, maintaining their bound conformations. Using that no new conformational classes were generated further and to sample
the Monte Carlo annealing algorithm, the ligand was then docked into the conformational space thoroughly. Therefore, 100 simulations with
the protein binding pocket. The Monte Carlo move set includes ligand different random seeds are conducted for each pretgjand complex.
rotation, which rotates the ligand in the coordinate space as a rigid (b) Restraint. A harmonic restraint called a surface restraint between
body; ligand translation, which translates the ligand in the coordinate the protein and ligand was adopted to keep the ligand in contact with
space as a rigid body; ligand torsion rotation, which rotates the partial the protein surface. The restraint was applied between the nearest atom
ligand atoms around the randomly selected ligand backbone or side-pair of the protein and ligand for which the distance is the shortest
chain torsion angle; protein side-chain torsion rotation, which rotates between any proteialigand atom pairs, and finally was coarse-grained
the related protein side-chain atoms around the selected protein side-by determining the distance between the geometric centers of the grids
chain torsion angle; and protein backbone torsion rotation, which rotatesin which the restrained atoms were located (eqdljs the distance
the partial protein atoms around the selected protein backbone torsionbetween the centers of the nearest grid cells, énd the contact
angles. All flexible torsion angles are consistent with the given rotamer distance cutoff, 6.0 A.
library 2738 The detailed Monte Carlo process is illustrated in supplement
B (Supporting Information). Econstraint:{
In the Monte Carlo step involving the protein side-chain torsion
rotation, first a ligand neighboring space is defined to cover the grids To further accelerate the computational speed, we shrank the

that ligand occupied and the neighboring grids. One protein residue in . . ) . ;
. . L . . conformational space accessible by the ligand by introducing pocket
this space is then randomly selected, and its side-chain torsion angles ) : :
L . restraints. The restraint was computed between the geometric centers
are rotated by small random angles within the given thresholds from

the rotamer library, respectively. The clash between the related atomsOf the protein binding pocke@ and the "ga'?d (eq d_)s the distance
) : . . Lo : between the above geometric centers, dni the distance between
is examined, and the rotation will repeat again if it results in atom

. - . the geometric centers in the native complex structure plus a buffer of
clashes in the generated complex. Because protein buried-cores are ofte . . . .
. L . . .0 A. The accessible volume is large enough to include the protein
highly compacted, most of the accepted protein side-chain torsion

rotation after clash-checking is located on the protein surface. The _blndlng pocket as well as neighboring regions. Because the restraint

obtained structure is additionally judged by the metropolis criterion |nformathn can be easily obtained from roug_h prqteln _structural ar_laIyS|s
L . or experimental data, the methods applied in this study will be
based on binding energy evaluation.

applicable to “real-world” problems.
(38) Liu, Z.; Jiang, L.; Gao, Y.; Liang, S.; Chen, H.; Han, Y.; Lai,Rroteins From eq 1, we can see that both restraints will be zero and will not
2003 50, 49-62. contribute to the binding free energy when the ligand approaches the

0, d<d,
(d—dy? d=d, @)
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neighborhood of the protein binding pocket. In other words, these effect of a neighboring atofnon the accessible surface of atonand
restraints will not influence the energy evaluation nor the conformational by is the contact surface area between atorasd].
preference within the binding pocket. (c) Go Potential for the Internal Energy of the Protein and
Energy Functions for Protein—Peptide Binding Affinity Evalu- Ligand. Differences in the protein or ligand internal energy, resulting
ation. (a) A Pairwise Atomic, Distance-Dependent Potential between from movement around torsion angles, were computed using a Go
the Protein and Peptide.Our group has developed a knowledge-based potential. This ensured that their conformations remained near native,
potential, SMoG, which can accurately predict the binding free energies while permitting reasonable flexibility during the docking proc&g$:43
of many proteir-small molecule complexes. An obvious defect in the For most “real-world” docking studies, however, the internalgdergy
potential is its weakness in considering electrostatic-like interactions, of the ligand would be inaccessible because the bound structure is
which are highly distance-dependent. To fully characterize all atom- unknown and the peptide ligand is too flexible to assume a single
pair interactions, especially the distance-dependent interactions, aconformation. In many cases, however, the iG@rnal energy term
distance-dependent energy function is proposed, which is illustrated does not contribute significantly to the total complexed energy. This
in eq 2. In our design strategR; is the actual distance between a pair  suggests that this energy term could be reliably neglected in future
docking studies. This argument is more thoroughly described later in
Epi—contractj = Aij(R-j - Bij)CU +D; this paper. However, for those complexes in which the ligand is known
(IA) =1.0,-1=C; =2,|Dy| =1.0) (2) to have a specific bound conformation, for example, the peptide
substrate bound to Bcl:Xthat maintains aro-helical structure in
of atoms of types andj; A; is the force constant related to the atom complex;* a Gointernal energy term may be useful.
pair; By is the typical interaction distance between atoms of tyipes The total energy in docking is the sum of the proteligand contact
andj; the exponenC; determines the interaction’s distance dependence; energy, the protein and ligand internal energies, and the protein and
andD; corresponds to a basic packing background. Several constraintsligand solvation energies (eq 7). The adjustable paraméje;, Cj,
were applied to the parameter8; was set to be greater than the clash
distance (0.75 of the sum of van der Waals radii) and less than the Stotal = Epi—contact™™ WpgFp-go T WagEi—go + WosEp-sor T WisEi—col
contact distance (1.6 of the sum of van der Waals ra@jj)took the (7)
discrete values of-1, 0, 1, or 2, which characterize the electrostatic
interaction 1), van der Waals or packing effect (0, 1), and hydrogen-
bond or salt-bridge interaction (2), respectively. These constraints have
the obvious benefit of shrinking the accessible solution space, providing
a tractable optimization problem. In order to avoid the significant
difference betweeA;’s andDj’s, Aj andDj; were normalized together
to ensure the parameters have comparable values by iteration
optimizatiorn—A;' andD;'" are the corresponding normalized parameters
used in the final potential (eqs 3 and—Hnd a boundary condition
was established which enforces the pairwise endggytd be 0 when
the distance between the atoms is equal to or greater than a 6.0 A cutoff,

andD; in distance-dependent proteipeptide contact energy ar,
Bi, Ci, andD; in solvation energy form the final potential and will be
optimized in the following self-consistedtscore optimization process.
Potential Optimization. (@) Z Score Optimization. Z score
optimization has been successfully used in developing protein folding
potentials®® This method is based on the simple thermodynamic
hypothesis that the native structure of a protein has the lowest energy
(or free energy or potential of mean force if solvent degrees of freedom
and short-scale motions of the protein are taken into account), proposed
by Anfinsen in 1961546 Here we applied this approach to protein
ligand interactions and assumed that the native conformation of the
protein complex is the conformation with the lowest binding free energy.
U= /Z(AijZ + DijZ) 3) There are two typical score fun_ctions. One is called the critical
T score Zc) and is based on a continuous random energy model (REM),
which presumes that energies of both the native structure and decoy

Aij' = Aij/U1 Dij’ = Dij/U 4) structures are random Gaussian variables. The crifisabre is related
] ) ] to the gap between the native energy and the average energy of the
(b) A Solvation Energy Function Based on the Atomic Solvent- decoys (eq 8), where(E) is the standard deviation of the decoy

Accessible Surface (ASAS)A simplified solvation energy function energies[Eqis the average energy of the decoys, aneffers to one
based on the solvent-accessible surface was adopted, the form of Whidbroteirrligand complex. AnotheZ score function is called the gap

is similar to the pairwise contact potential (eq 5). The atomic solvent- ¢qre Zo), which presumes that there is a significant gap between native
accessible surface was computed by an approximate analytic methodenergy and the lowest energy decoy (eq 9). We have considered the
(eq 6)°in which the parametef andP; were refit for the polypeptide  merits of both functions and here propose a combiisdore function

systems. (eq 10),
= A1(S - Bi)CI + Di' S = Bi Enaivei - i|:|
0”_{0_0 , 0.0=S§<B Zci:tTE)[EC 8
(Al = 1.0, 0.0<B <30.0, 0= C <2, |D] < 1.0) (5) '
Zsi = Enativei ~ Etowest 9)
§=T, |_|(1-0_ PiP;by/T) (6)
i 77 4 Zoi _Eyi—EqO, Eyi = Egyesil 10
I T T R

Compared with surface areas computed using the program Ndécess,
we obtained a high correlation & = 0.824 and a slope of 1.03 for
atoms in both native structures and decoy structures. In &gi$the
theoretical isolated surface area of ator is the computed surface
after deduction from neighboring atom contad®s,s a single-body
scaling factor forT; from atomi’s own effect,P; scales the two-body

to ensure a distribution of decoy energies and a significant gap between
the native energy and the lowest energy decoy. For multiple pretein
ligand complexes, two averagescores[Z[4] and[Z[3, are computed,

(41) Go, N.; Abe, Hint. J. Pept Protein Res1983 22, 622-632.

(42) Go, N.; Abe, HBiopolymers1981, 20, 991-1011.
(39) Hasel, W.; Hendrickson, T. F.; Still, W. Tetrahedron: Comput. Methodol. (43) Abe, H.; Go, NBiopolymers1981, 20, 1013-1031.
)

1988 1, 103-116. (44) Sattler, M.; Liang, H.; Nettesheim, D.; Meadows, R. P.; Harlan, J. E;
(40) Hubbard, S. J.; Campbell, S. F.; Thornton, J.JVMol. Biol. 1991 220, Eberstadt, M.; Yoon, H. S.; Shuker, S. B.; Chang, B. S.; Minn, A. J.;
507-530. Thompson, C. B.; Fesik, S. Wsciencel997, 275, 983-986.
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which emphasizes a smallef; score gap (eq 11) and a more

Z,
M

Mo ifallz <0
11

ifanyz = 0

zZh= (11)

representative averaggscore gap (eqs 1214), respectivelyZ score
optimization was performed using a Monte Carlo annealing simulation
to parametrize the potential used to distinguish native structures from
decoy structures.

Max(Z), ifanyZ =0
M

Z3={ % " faiz <0 (12)
Zan = |_| Zi (13)

_ Zi/Zavgl (‘Z|| Z IZanl)
Q= {Zavg/Zi- (1Zl < 1Zavd) -

(b) Self-Consistent Potential Optimization Process in an MPI
Parallel Package A self-consistent algorithm written in the C language
and using MPI parallel controlling was developed to link decoy
generation through a docking method and potential optimization
(supplement C, Supporting Information). The whole process has four

was reached. The final potential was chosen for the docking study as
described below.

(c) dRMS Virtual Energy Function for Consideration of Protein
Flexibility in Docking. While actual docking (see below) will be carried
out with the full potential developed by the above self-consistent
process, as a first step in evaluating the role of protein flexibility we
use dRMS as a virtual energy function. While such an energy function
requires knowledge of the final structure of the complexes and as such
cannot be used for docking purposes, it is useful for the analysis of the
minimal requirements of degree of protein flexibility needed to achieve
accurate docking with the more realistic energy function that will be
used throughout this study. By computing the distances between all
protein-ligand atom pairs, the dRMS is obtained as the root-mean-
square deviation of the distances between the docked conformation and
the native conformations. The dRMS potential, similar togpGtntial,
assigns the most favorable energy to the native configuration. The
energy function increases proportionally to dRMS, providing a smooth
funnel landscape. This also provides a long-range attractive potential
that is not contained in a typical Guotential.

Results

Flexibility Consideration in Protein —Peptide Docking.
Which aspects of flexibility should be considered in protein
peptide docking? Instead of using the optimized potential, the
dRMS virtual energy function was used to study sampling issues
related to the importance of flexibility in docking. In the Monte
Carlo docking simulation with dRMS, after each movement,
the dRMS between the generated conformation and the native
structure is computed. The difference in dRMS virtual energy
to the last step is judged by the Metropolis criterion to determine
whether the current movement is acceptable. Sample complexes

steps. In the initialization step, the complexes are prepared and theirfrom the training set with different ligand degrees of freedom
native structures are relaxed to reduce clashes; an initial potential, whichand different degrees of solvent exposure in the binding pocket
can be random or predetermined, is constructed. In the second stepwere selected as test cases (Table 2). Initially, two docking

the flexible docking method generates decoys based on the initial
potential. In the third stef¥ score optimization is used to parametrize
the potential within a Monte Carlo annealing process. This process
includes perturbation and normalization of the potential by adjustable
parametersy;, Bj, Cj, Dj, A, B;, Ci, andD;, decoy energy computation,

Z score computation, Monte Carlo metropolis evaluatiorZcfcore

difference to determine whether the perturbed potential is acceptable,

and convergence evaluation, until an improved potential is obtained.

approaches were employed to investigate the importance of
flexibility. In the first approach, full ligand flexibility was
considered while the protein was kept rigid. It was found that
the complexes with a solvent-exposed protein binding pocket
(degree of exposure 50%), such as 1cka and lawq, achieve
native-like conformations (dRMS1.0 A) with relatively high
frequency ¢&50%). However, the complexes containing a buried

Finally, in the last step, the decoy database is augmented with a newprotein binding pocket (degree of exposuré0%) had native-
set of decoy structures generated using the improved potential. Thelike conformations less frequently (frequensyp0%), and the

latter two steps are repeated until the final score reaches a

average dRMS of the docked conformations was high (about

predetermined converged value or the number of decoys in the database-4.0 A). In the case of 1bxl, the binding pocket is not

reaches a threshold. In our work, the initial potential is derived on the
SMoG2001 knowledge-based meth#6ch® The initial distance-depend-
ent potential was chosen to match closely the SMoG2001 potéhtial.
In the SM0G2001 potential, the interaction energy between two atoms

is the sum of interaction energies associated with two distance bins

(0.0-3.5 A and 3.54.5 A). The distance-dependent functional
described in this work (eq 2) is fit according to eq 15, whekeis the
Eplfcontacu'j = (Mij - Nij)(Rij - 3'52)1 + Nij (15)
SMoG2001 energy between atom typesndj at a distance of 3:5
4.5 A, andNj; is the energy between typeésandj at a distance of

0.0-3.5 A. An initial set of 500 decoys was generated, and 150 decoys
were added in each round until the convergence criterion of potential

(45) Anfinsen, C. B.; Haber, E.; Sela, M.; White, F. Proc. Natl. Acad Sci
U.S.A.1961, 47, 1309-1314.

(46) Anfinsen, C. B.Sciencel973 181, 223-230.

(47) Ishchenko, A. V.; Shakhnovich, E. J. Med Chem 2002 45, 2770~
2780.

significantly buried; however, native-like conformations were
rarely observed. The reason for this may be the size and the
flexibility of the 16-residue ligandX15 residues). To achieve
more consistent docking results, additional protein flexibility
may be necessary.

In the second approach, flexible protein side-chain torsions
were introduced in the docking process. The results show that
more native-like conformations were generated for all com-
plexes, and the average dRMSs of the docked conformations
were significantly reduced. Among the test cases, the complexes
with an exposed binding pocket, especially the cyclophilin A
complex lawq, demonstrated significant improvement. The
frequency of native-like conformations for this system was
higher than 90%, and the resulting docked peptides were
structurally similar to one another, with an average dRMS of
less than 0.8 A relative to the native conformation. Although
the frequency of native-like conformations in buried binding
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Table 2. Effect of Flexibility of Protein and Ligand on Docking Results

ligand flexibility only additional protein side-chain flexibility

PDB exposure decoys (%) decoys (%) average decoys decoys average

ID ligand length degree/% <1.0A <2.0A drRMS/A <1.0A <2.0A drRMS/A
1a30 EDL 3 16.2 6.0 8.0 4.45 12.0 38.0 2.86
lawq HAGPIA 6 53.9 58.0 80.0 1.02 94.0 98.0 0.78
1bxI GQVGRQLAIIGDDINR 16 40.2 6.0 26.0 3.94 12.0 46.0 3.27
1cka PPPALPPKK 9 58.8 82.0 100.0 0.42 94.0 100.0 0.31
2fib GPRP 4 32.2 20.0 24.0 4.26 34.0 42.0 3.17

Monte Carlo Annealing Process

I I ' I ‘I'Annealing_F':'ucess_1 "
“Annealing_Process 2"
“Annealing_Process_3" ——

0.08

0.07

0.06

0.05

0.04

Temperature

0.03

0.02

0.01

1] 200 400 600 80O 1000 1200 1400
Monte Carlo Steps (K steps)

Figure 1. Three kinds of annealing protocols exploited in flexible protgieptide docking. From curves 1 to 3, the temperature decreasing rates in Monte
Carlo annealing docking process ranged from a fixed rate to a more flexible rate, and the system was kept under higher temperature for a longer time.

Table 3. Results from Different Annealing Protocols in Flexible Docking with dRMS Virtual Potential

annealing protocol 1 annealing protocol 2 annealing protocol 3
PDB pocket exposure decoys (%) average decoys (%) average decoys (%) average
D degree/% <1.0A dRMS/A <1.0A dRMS/A <1.0A dRMS/A
1cka 58.8 94% 0.31 100% 0.20 100% 0.18
2fib 32.2 34% 3.17 72% 1.53 90% 0.77

pockets was significantly smaller than that in the exposed This analysis revealed that there were conformational con-
binding pockets, protein side-chain flexibility still dramatically straints due to the accessibility from the protein binding pocket
improved the docking results (Table 2). and the size and flexibility of the peptide. In such docking
In addition to considering the flexibility of the protein and processes, not only full ligand flexibility but also protein side-
ligand, making changes to the annealing protocol may be helpful chain flexibility should be considered. It may also be necessary
in overcoming the high energy barriers to significantly improve to include partial protein backbone flexibility when hinge
the docking accuracy. Docking with the dRMS virtual scoring movements are involvet¥ 5! Moreover, successful protein
function will produce native-like structures much more fre- peptide docking also required an annealing protocol in which
quently than with any transferable potential, and therefore the initial high temperature is cooled more slowly in order to
provides an upper bound on the expected docking efficiency. allow the system to overcome high energy barriers due to
In a modified annealing protocol, instead of decreasing the structural constraints.
temperature at a constant rate, a variable rate was used in the In fact, docking with our optimized potential also demon-
Monte Carlo annealing docking. This had the effect of maintain- strated similar high energy barriers due to structural constraints.
ing a higher temperature in the beginning stages (Figure 1). If the docking started from the native bound state, it seldom
The docking results show that the revised annealing processgenerated far-native structures which had distinguishable con-
improved the docking accuracy further. For complexes with formational differences and larger d(RMSs5.0 A) compared
sowent_eXpOSEd. bm.dlng pockets, such qs ].'Cka’ th.e hlgh(48) McCammon, J. A; Gelin, B. R.; Karplus, M.; Wolynes, P Nature1976
frequency of native-like structures was maintained while the 262, 325-326.
average dRMS was reduced. For complexes with buried binding (49) Rose. R. B Craik, C. S.; Stroud, R. iochemistry1998 37, 2607~
pockets, such as 2fib, the frequency of native-like conformations (50) Rose, R. B.: Craik, C. S.; Douglas, N. L.; Stroud, R BibchemistryL996
increased to greater than 60%, and the average dRMS was lesg, ) i?iikl;g?’gf;lé?i“b_; Kurg, R.: Kivi, S. Ustay, Myirus Res 2001, 75,
than 1.5 A (Table 3). 95-106.
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Table 4. Potential Parameters of Ligand Solvation Contribution

atom

type CcN cP cc oc OH NM NA NH N3 S
A 0.0740 —0.0497 0.0000  —0.0430 —0.0211 0.0439 0.0000 0.0000 —0.0717 0.0444
Bi 4.199 13.395 0.000 13.954 15.502 3.404 0.000 0.000 7.412 17.482
G 0.5 0.5 0.0 0.5 0.5 0.5 0.0 0.0 1.0 1.0
Di —0.0668 0.0152  —0.0478 —0.0323 0.0308  —0.0087 0.0905  —0.0114 0.0001 0.0561
F10 charged ligand carboxyloxygens and protein $pitrogen atom
8 pairs (squareqsye;). Because the optimized potential is a mean
'9N3 2 force potential, there are some functional relationships that
o te cannot be clearly associated with simple pair potentials. These
g: NH Cj parameters enforce distinct distance dependence regarding
BT interactions between various atom types, which may be used
E " i L to evaluate binding affinity more accurately. TGgparameters
S| m also appear coarsely symmetric with respect to the diagonal line
& | (Xo1Yio] — Xq201¥i20), implying similar but not identical properties
a |, oH between related atom types located in ligands and proteins,
Tl o 0 respectively. All optimized potential parameters are listed in
B E supplement D (Supporting Information).
o , ce (b) Analysis of the Solvation Contribution. The solvation
. . contribution to the potential is based on a model that is
L1 dependent on the atomic surface area. Here we examine whether
e the parameters determined for this model are physically intuitive
B N CP CC OC OH MM WA KA N3 8 (Table 4). The most significant surface dependend@sare
6 1 2 3 4 3 & 7 8 9 10 associated with the fully charged nitrogen (atom type N3) and

exposed hydrophobic sulfur (atom type S). However, the

Figure 2. Potential parameter§; in contact energy between protein solvation energies of these. two atom types have proport|on§tl|ty
peptide atom pairs. Squares with different colors of blue, cyan, green, and constantsA;, of opposite signs, as expected when comparing
yellow represent differer(; values of 2, 1, 0, anet1, respectively, which polar and apolar solvation. Other atom types demonstrated a

also represent different distance dependences of contact interactions betwee| lati ;
. ! ) ; ) ) ; ively weak nden n the atomi rf oy
protein—peptide atom pairs, such as harmonic bond interaction, hydrophobic Felative y weak dependence o € atomic surtace a (

or van der Waals interaction, and Coulomb-like electrostatic interaction. €SPecially the buried carbonyl C_arbon (atom type CC). It was
also found that all hydrophobic atom types have positive

proportionality constantsA) while polar atom types have
negative proportionality constantd;), again consistent with a
physical description of polar solvation.

The physical nature of the solvation terms can be further
illustrated by examining the effects of ligand binding to an MHC

Ligand Atom Type

to native structure, and most of the generated conformations
had dRMSs of less than 2.0 A. Finally, with full flexibility

included with regard to the ligand and protein side chains, and
using a Monte Carlo annealing process with a variable cooling
rate, the docking algorithm and the optimized potential can often

generate near-native conformations with dRMSs of less than ° ’ 9 - :
30A. I (Major Histocompatibility protein class 1) protein complex

Potential Analysis. (a) Analysis of Contact Parameters. (PDB ID 1duz). The solvation cgntributions of the free state
On the basis of 6600 generated decoy complex structures ancd®nd the bound state of the peptides were computed from the
42 intermediate potentials, the final optimized potential was Potential (Figure 3). When the ligand was in the free state, a
established using the self-consistent procedure described in théarge positive contribution to the solvation energy came from
Methods. The potential parameters were analyzed to determingth® hydrophobic residues, such as leucine, tyrosine, phenyla-
whether they reflect well-established physical relationships. [anine, valine, proline, while when the ligand was in the bound
Regarding the distance dependence of contact energy paramstate, a smaller positive or even negative contribution was made
eters, we focused on the paramefgidescribing the functional by the same residues. Therefore, if we consider the solvation
form of distance dependence (Figure 2). Optimized functionals €nergy difference during binding, it demonstrates that the
for atom-pair interactions are physically intuitive. For example, Nhydrophobic residues will often provide a favorable solvation
a Coulomb-like distance dependen& & —1, e O1/r) was contribution in binding, consistent with other models of
found between carboxyloxygen and carboxyloxygen pairs hydrophobic solvation. For the protetpeptide complexes
(squarexajyja;). Hydrophobic or van der Waals-like interactions ~ Studied here, solvation contributes-280% of the energy in
between well-separated pairs, showing a weak distance depenbinding.

dence Cj = 0, 1), were found between neutral carbon and

neutral nitrogen atom pairs (Squatgyy, XelYrw, X1Ys] Xe1Ye))-
A bond-like harmonic distance dependend®; (= 2) was

(c) Binding Free Energy Prediction. The binding affinities
of five MHC | HLA-A*0201 protein complexes with different
peptides were computed using the optimized potential, based

detected in pairs representing hydrogen-bond interactionson the energy difference between the bound and free states. All

between ligand hydroxyloxygens and protein aromatic nitro-

gens (squaregs)yjs)), disulfide bonds between sulfusulfur

complexes have known crystal structures and experimental
binding free energies and do not have similar structures in the

atom pairs (squanioyioy), and salt bridges between oppositely  training set (Figure 4a). An acceptable correlatioRdf= 0.770
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Atom Solvation Variation in Binding (1DUZ)
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Figure 3. Analysis of the ligand solvation contribution of the MHC | complex 1duz.
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Figure 4. Comparison between this work and Rognan’s work on predicted binding affinity for five determined X-ray structures of MHC | HLA-A*0201
complexes. (a) Fitting correlation of the developed docking potential. (b) Fitting correlation of empirical scoring function in RognanR?wofk§95).
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Figure 5. Accuracy of docking results: dRMSenergy correlation of proteinpeptide docking. (a,b) Successful docking results (here results for complexes
lawq and lelw are listed). (c) Successful docking result in which the native-like docked conformation can be distinguished by additional eoaformati
clustering (result for complex 1eg4 listed). (d) Failed prediction result in which native-like conformations cannot be distinguished (heiteftrecoesplex

1pau is listed).

between the predicted binding affinities and the experimental atom types in proteins. Therefore, if the training set can provide
binding free energies was obtained, comparable toRhe= typical atom-pair distance favorites, the developed potential
0.895 computed using an empirical scoring function specifically might be transferable to more proteipeptide complexes.
developed for MHC | protein complexes in Rognan’s work Protein—Peptide Docking ResultsThe docking algorithm
(Figure 4b)1%29The predictions made by these two approaches and the potential were examined further by docking pretein
are also quite similar in that both overestimate the binding peptide complexes from both the training set and the testing
affinity for 1hhj while predicting well the binding affinities for ~ set. For each complex, 100 docked conformations were gener-

the remaining four complexes. By including the Bal-Zpop- ated by Monte Carlo annealing with different random seeds,
tosis comple® in the database, the correlation is maintained and their dRMS of proteirligand heavy atom pairs were
and even improved to yiel&? = 0.795. computed. Basically, the relationship between dRMS and energy

High correlation with regard to MHC | protein complexes as in all cases followed the principal trend that conformations with
well as an additional Bcl-Xcomplex suggests that our potential lower energies have smaller dRMSs. A few cases demonstrate
may be a transferable potential. It should be noted that the some deviations from this overall trend (Figure 5). A compre-
implied transferability is principally determined by the distribu- hensive analysis of these docking results is shown in Table 5.
tion of atom-pair interactions in the generated decoys, but not Successful simulations were conducted on 8 of 10 complexes
by the specific structures within the training set. Because the in the training set (lawq, 1be9, 1bxl, 1cka, lelw, 1gux, lycq,
potential is based on atom-pair interactions, it converges givenand 2fib) and 7 of 15 complexes in the testing set (1g3f, 1io6,
a reasonable number of decoys. For example, in supplement Elab9, 1bc5, 1duz, 1jhg, and 2seb), in which the generated
(Supporting Information), the distance distribution of atom pairs conformations with the lowest energy were native-like structures
between protein S atom type and peptide CN atom type in the with dRMS less than 3.0 A.
decoys covers all SCN distance possibilities in current PDB A docked structure with the lowest energy, corresponding to
structures, though the decoys are developed from limited trainingthe MHC | complex (1duz), is shown (Figure 6) and has the
complexes and the S atom has a lower frequency than otherhighest dRMS (3.01 A) of all the minimum energy docked
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Table 5. Flexible Protein—Peptide Docking Results

PDB resolution/ exposure smallest lowest energy

D A ligand length degree/% dRMS/A drRMS/A
1la30 2.00 EDL 3 16.2 2.38 5.37
lawd 1.58 HAGPIA 6 53.9 0.73 0.85
1be@ 1.82 KQTSV 5 40.7 0.79 1.05
1bxP? NMR GQVGRQLAIIGDDINR 16 40.2 1.44 1.44
lcka 1.50 PPPALPPKK 9 58.8 0.64 0.80
leg® 2.00 NMTPYRSPPPYVP 13 61.7 1.17 11.89
leln? 1.60 GPTIEEVD 8 48.8 0.66 0.71
lgu¥ 1.85 DLYCYEQLN 9 46.4 0.68 1.79
lycqft 2.30 ETFSDLWKLLP 11 42.4 0.79 1.63
2fib2 2.10 GPRP 4 32.2 0.57 2.62
1i31b 2.5 FYRALM 6 61.8 1.96 8.07
2chp 2.1 SDGY(PO4)TPEPA 9 64.8 1.68 9.25
1g3f NMR AVPI 4 43.8 0.75 2.15
lio6? NMR RHYRPLPPLP 10 57.8 1.64 2.66
lab@ 1.6 CGVPAIQPVL 10 64.1 0.60 0.68
1bcB® 2.2 NWETF 5 49.6 0.76 1.42
1duz 1.8 LLFGYPVYV 9 26.1 2.78 3.01
levi? 1.8 FPPPP 5 44.0 0.64 4.62
1fo5P NMR MSCDKSTQT 9 44.2 0.91 3.34
ljhgp 1.3 w 1 37.3 1.01 2.44
Ivwg! 1.46 CHPQGPPC 8 41.0 3.83 5.16
8tinP 1.6 VK 2 39.0 0.95 4.40
2sely 25 AYMRADAAAGGA 12 38.7 1.04 1.04
1lceF 1.9 GTSSPSAD 8 33.2 2.12 4.62
1lpalf 25 DEVD 4 27.9 1.97 5.22
1shf 1.9 PPPALPPKK 9 - 1.04 6.90
2cpf 1.63 HAGPIA 6 - 0.68 3.21

aComplexes which were accurately docke@omplexes which have native-like docked conformations can be distinguished by additional conformational
clustering.c"® Complexes which failed in prediction because native-like conformations cannot be distingdisi@it{as the deeply buried binding pocket;
d1vwg's ligand has to bend extremely to fit the pockéBesult of docking peptide to unbound protein structure.

portion of the peptide just as closely resembles that in the native
state. Generally, however, this is still a successful docking.

Further, for one complex in the training set (1eg4) and five
complexes in the testing set (1i31, 2cbl, 1evh, 1f95, and 8tlIn),
although the docked conformations with the lowest energy were
not near-native structures, the docking simulations were still
successful because the native-like conformations were among
the 10 lowest energy conformations and could be easily
identified (Figure 5c¢). Those non-native conformations with the
lowest energy were often conformations trapped in a local
energy minimum, in which the ligand had diffused away from
the protein binding pocket. These trapped conformations could
be avoided by considering more restrictive pocket restraints. In
a few cases, the ligand adopted an alternative binding mode
within the binding pocket.

In the end, a total of 9 out of 10 complexes in the training
set and 12 out of 15 complexes in the testing set were accurately
docked, where the averaged dRMS of native-like conformations
was 0.83 A in the training set and 1.23 A in the testing set. The
training set performed better than the testing set because it had
better structural resolution, as well as being trained specifically,
Figure 6. Structural comparison between the native conformation and the gtc. Docking simulations on 1 of 10 complexes in the training
docked conformation of the MHC | complex (1duz). The native conforma-
tion of the peptide is colored green, and the docked conformation is colored set and 3 of 1_5 complexes in the t.eStmg set fallled' Although
blue. these cases still generated near-native conformations, they were

hard to distinguish because there were no obvious structural
complexes. The structural comparison between the minimum classes in the generated conformations and the eneligMS
energy docked conformation and the native conformation distribution was not clustered (see Figure 5d). A buried protein
revealed that the docking process identifies the ligand’s native binding pocket might be the main reason for failure since all of
orientation in the binding site. In the minimum energy docked these complexes had deep binding sites with a solvent exposure
structure, the C-terminal conformation of peptide is almost of less than 40%. Ligand flexibility might be another consid-
identical to that in the native structure, while the N-terminal eration.
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Computational Speed. The computational speed of the
program is benchmarked on an Intel-P4 2.8 GHz PC with Redhat
9.0 linux system. Two complexes, 1cka and lawq, which have
different protein sizes and peptide sizes, are tested. In supple-
ment F (Supporting Information) we list the CPU time for a
1.5-million-step Monte Carlo docking. Because of pocket
restraint in energy function, the protein size does not have
significant effect on the speed, while the size and flexibility of
peptide are the principal factors. Basically there is a linear
Figure 7. Structural comparison between the docked conformation and COrrelation between the peptide flexibility and computational
the native conformation for the SH3 domaistereoview of superposed  time. For a complex system consisting of a 200-residue protein
structures of docking peptide to unbound protein structure in 1shf and native gnq a 10-residue peptide, it will take not morerttzah on the

bound complex structure in 1cka. Green, native bound peptide structure in b t hich is fast h idering the flexibilit
1cka complex; blue, docked peptide structure to unbound protein structure 200VE COMpUter, which is tast enough considering the tiexibility

in 1shf; remainder, superposed structures of unbound 1shf protein and boundof the system.
1cka protein.

Discussion

To validate the prediction ability in unbound proteipeptide Z Score Optimization Criterion. Efficient Z score optimiza-

dockgg, tr‘?]io ugbomlindh proter:n rs],tructlures, 1shf agd 2cpl, fare tion should consider all complexes within the training set and
tested. 1shf and 1cka have the homologous SH3 domains fromj, | ,qe a reasonable optimization criterion. In our potential

different species, for which the protein core structures are similar optimization, eq 11 was used initially, which was biased toward
while the binding sites have small differences caused by the complexes with a smallet gap (Z|), such as lcka. By
neighboring Ioop_s. 2cpl has the unbound protein stru_ctur_e as inoptimizing on the basis of eq 11, the finglscore converges
lawg. The docking result shows that there are still similar o541y in the initial steps of the self-consistent optimization
energy-dRMS relationships for these two cases and the rocess, yielding &ZCclose to—5.0 (see Figure 8). However,
conformations with the smallest dRMSs, around 1.0 A, belong this approach would produce a biased potential, which cannot
to the top conformations with lower energies and can be easily generate efficient decoys for all training set complexes necessary
identified by additional structural clustering. Superposing the o further optimization. Therefore, to eliminate this bias in the
above-obtained 1shf peptide conformation onto the 1cka natiVepotential optimization process, eq 12 was adopted to more
structure gives great structural fitness, as shown in Figure 7. yniformly consider all complexes within the training set. This
In general, the flexible docking algorithm can generate native- equation takes into account the averdgealue as well as both
like protein—peptide complex conformations within 3.0 A of boundaries of theZ gaps.Z score optimization attempts to
the crystal structure. These docked conformations are oftenmaximize the energy gap between the native structure and the
among the lowest energy structures and can be distinguishedcorresponding decoys, while the decoy generation procedure
by additional conformational clustering when necessary. attempts to minimize the gap. As in traditional mimax

Zzcore Optimization

Blue LinesPoints — General Mean Zscore

Pink LinesPoints —— Single Zscore of Training Complex 1 to 10

L 1 1 1 1 1
1000 1500 2000 2500 3000 3500 4000
HNumber of Decoys

Figure 8. Z score optimization process.
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Figure 9. Energy distribution of generated decoys for 1cka. (a) Energy distribution of decoys in intermediate potential optimization process (total 3800
decoys), which basically followed Gaussian distribution and only a few native-like decoys appeared. (b) Energy distribution of decoys indtentatker p
optimization process (total 5600 decoys). More native-like decoys are generated. (c) Energy distribution with more near-native decoys ¢@talyS500

which formed a shifted Gaussian distribution. (d) Criterion to distinguish two Gaussian distributions by fwhm.

algorithms, the solution to the optimal potential can be found was developed from the initial 3500 docked decoys, it was
from the above self-consistent process. optimized further using two different processes. In one process,

As stated previously, the energy of the generated decoys foradditional decoys were generated by docking starting from the
each complex follows a Gaussian distribution determined by native bound conformations, producing more near-native decoys.
the criticalZ score Zc). In addition, native structures are always The energies of these new decoys form an energy distribution
located in the extreme tail of this energy distribution (Figure inclusive of the native energies (Figure 9c). Another optimiza-
9a). When the potential has been optimized well, more native- tion process generated decoys by docking from far-native initial
like decoys will be generated. The energies of these decoys mayeqnformations. A comparison was conducted usingZthgcore
be similar to the energies of the native structures and would gptimization process. The correlation between the predicted
form a shifted Gaussian dlstnbu_tlon_around the native energy pinding affinity using the optimized potentials and the experi-
(Figure 9b). Because these native-like decoys are not signifi- o nia) binding free energies of the same five MHC | protein
cantlly_disti.nct from the native structures, furtherloptimiz.ation complexes revealed significant differences. The first process,
to d|st|_ngU|sh them from the native structures will overfit the based on near-native decoys, produces a potential that has failed
po_termal and pusiZc to ZEro. Therefore, a New convergence ., converge. The correlation with experimental binding affinities
criterion should be determined f@g.5253 A negative value of . ) : . : .

using this potential was quite poor (Figure 10). As in the

full-width half-maximum (fwhm), which in our case was . . .
. T . A combinedZ score (eq 10), wheZs was used in potential
—2.354, is the standard to distinguish two Gaussian distributions, ~~ .~ " . . Do o
optimization, which more strictly distinguishes the native-like

and could be a reasonable optimization criterionZgfFigure . . .

9d). In our potential optimization, the findc reached was decoys from the native structure, the resulting potential was even
2 '421 ' worse. In the second process, based on more far-native decoys,
the potential converges well and produces potentials with high

correlation to experimental binding affinities.
As for the optimization criterion of gag score Zg) within

The proposedZc criterion was supported by designed
potential optimization based afx. After the initial potential

(52) Mirny, L. A.; Shakhnovich, E. IJ. Mol. Biol. 1998 283 507-526. i ;
(53) Mirny, L. A.; Finkelstein, A. V.; Shakhnovich, E. Proc. Natl. Acad Sci the combined” score (eq 10)’ the theoretical cutoff should be
U.S.A.200Q 97, 9978-9983. zero, because the critic@ score Zc) attempts to make the
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Figure 10. Determination of optimization criterion for critic@ score Zc) by comparison of two different potential optimization processes: 1, potential
optimization based on more artificial near-native decoys generated by docking starting from native bound conformation; 2, potential optisiedttmnm
general decoys docked from the far-native stateZ(®)ore comparison; process 1 was harder to converge. (b) Fitness correlation of binding affinity for five
known MHC | complexes.

energies of decoys and the native structures continuously (6%) while the protein Genergy contributes more significantly

distributed. Our finalZg reached a value 0f0.395, and still (>16%). Although the ligand Genergy does not appear to
has a small energy gap. strongly distinguish near-native from far-native decoys, the
G0 Energy Contribution. In this work, Goenergies in the ligands nevertheless exhibit significant conformation variability,

protein and peptide were introduced in order to restrain protein with total dRMS ranging from 0.0 to 15.0 A. Therefore, the
and peptide conformations, improving docking sampling ef- ligand Go energy does not contribute significantly to the
ficiency. Here we investigate the importance of the Go energy-dRMS distribution and is less important for the
“restraints” as it pertains to the training set complexes (Table thermodynamic aspects of docking. Since the ligandestraint

6). First, the contribution of the Genergies to the total energy  does not perturb the obtained results, this energy term can be
was computed for the native structures. The smaller contributionignored in future docking. The protein Genergy restraint,

of the ligand Gaenergy 6%) and larger contribution of protein  however, is still important, together with the proteipeptide
Goenergy ¢ 35%) roughly illustrates that the ligand @aergy distance-dependent contact energy and the atomic surface-based
is less crucial while the protein Genergy may be important.  solvation energy.

A more accurate description of the importance of thee@Gergy
should consider its contribution to the energy difference between
docked conformations, which is the key to identifying final In summary, to overcome high-energy repulsive barriers in
native-like docked structures. It was found that the ligand Go protein—peptide docking, a docking method was developed
energy range contributes minimally to the total energy range which not only considers the full flexibility of the ligand but

Conclusion
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Table 6. GO0 Energy Contribution to Total Conformational Energy

contribution of Go energies contribution of Go energy range
to total energy of native structures to total energy range of docked conformations

PDB ligand ligand Go protein Go ligand Go protein Go

ID size energy/% energy/% energy/% energy/%
1a30 3 0.54 61.28 2.75 37.77
lawq 6 0.92 61.36 1.35 25.59
1be9 5 1.27 49.64 2.01 23.56
1bxl 16 4.02 51.25 4.40 17.33
1cka 9 3.15 35.89 2.03 16.39
leg4 13 2.06 64.49 4.46 24.15
lelw 8 1.96 58.19 2.02 31.21
1lgux 9 1.38 66.34 3.86 21.11
lycq 11 5.22 43.74 5.14 16.51
2fib 4 0.39 64.37 1.66 36.89

also takes into account protein side-chain flexibility, which was ~ Acknowledgment. The authors are grateful to Concurrent
proven to be cruciain our preliminary calculatior-docking Pharmaceuticals for funding this research and to Jun Shimada
with an idealized dRMS virtual energy function. Using a for his help at the initial stages of the project.

physical optimization criterion and a training set of only 10
protein—peptide complex structures, a transferable potential was - ) ) g
designed for actual docking process. The optimization procedureProtéin-peptide potential atom types; supplement B, flexible
involves a novel iterative method basedscore minimization ~ 90cking algorithm used in the Monte Carlo annealing process;
and decoy generation. The potential considers pretigand supplement C, parallel self-consistent process for potential

atom-pair interactions and an atomic solvation contribution. The optimization and decoy generation; supplt_eme_nt D, pqtentlal
optimized potential accurately predicts binding affinity in Parameters dataset; supplement E, distribution of distance
protein—peptide complexes. With the optimized potential, the between protein-S and peptide-CN atom pair in depoys and PDB
flexible docking algorithm could recover the binding state of StI’UCtl:IreSE and sgpplement F. benchmark on docking speed. This
material is available free of charge via the Internet at

http://pubs.acs.org.

Supporting Information Available: Supplement A, table of

most proteir-peptide complexes with high precision. Both the
docking method and rapid potential might have potential
applications to database screening in drug discovery. JA032018Q
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